Solución de La piedra de afilar

Página 2 de 2

Solución:
El mejor método para resolver este problema se basa en el hecho de que las superficies de los círculos son proporcionales al cuadrado de sus diámetros, Si inscribimos un cuadrado ABCD en un círculo que tenga el tamaño original de la piedra de afilar, el círculo E, inscrito dentro de ese cuadrado, tendrá la mitad de la superficie del círculo mayor.

Ahora debemos agregar al círculo E la mitad de la superficie del orificio de la piedra. Para hacerlo, inscribimos un pequeño cuadrado en el orificio F, y dentro de este cuadrado inscribimos un círculo. El círculo más pequeño será, por lo tanto, la mitad de la superficie del orificio. Colocamos el pequeño círculo en G, haciendo que su diámetro forme un cateto de un triángulo rectángulo, cuyo otro cateto es el diámetro del círculo E. La hipotenusa HI tendrá entonces el diámetro de un círculo cuya área es igual a las áreas combinadas del círculo E y el pequeño círculo G. Este círculo, que aparece en línea de puntos, representa el tamaño de la piedra cuando ya ha sido usada a medias. Su diámetro puede calcularse de la siguiente manera:

El diámetro del círculo E es igual al lado del cuadrado más grande. Sabiendo que la diagonal de este cuadrado es de 22 pulgadas, llegamos a la conclusión de que la raíz cuadrada de 242 es el lado del cuadrado y el diámetro del círculo E. Un procedimiento similar demuestra que el diámetro del círculo más pequeño equivale a la raíz cuadrada de 242/49.

El cuadrado del diámetro del círculo en línea punteada es igual a la suma de los cuadrados de los dos diámetros ya citados. De modo que sumamos 242 a 242/49 para obtener 12.100/49, cuya raíz cuadrada es 110/7 ó 15 y 5/7. �ste es el diámetro en pulgadas del círculo punteado, y la respuesta correcta al problema.

Página 2 de 2
 

Paginas: